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Dimensionality Reduction

General Idea: Let n < N. Suppose we have a data set X ⊂ RN of
intrinsic dimension n. We wish to find an n-dimensional subspace
S ⊂ RN and a subset X̃ ⊂ S that best represents X .

Our Setting: We will present an algorithm for dimensionality
reduction on Stiefel manifolds that respects their topology.
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Stiefel Manifolds

Let 0 < t < s. The Stiefel manifold Vt(Rs) ⊂ Rs×t is the set of
orthonormal t-frames in Rs .

The orthogonal group O(t) acts on Vt(Rs) from the right via matrix
multiplication. The quotient is the real Grassmannian Gt(Rs).
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Equivariant Maps

Let X ,Y be spaces with an action of a group G , and π : X → Y be a
map. We say that π is G -equivariant if for all x ∈ X , we have
π(g · x) = g · π(x).
If a map π is equivariant, then it respects equivalence classes. That
is, if x1 ∼ x2, then π(x1) ∼ π(x2).

In particular, if our dimension reduction map π from a subset of
Vk(RN) to a subset of Vk(Rn) is O(k)-equivariant, then frames that
span the same k-dimensional subspace of RN will map to frames that
span the same k-dimensional subspace of Rn. Thus π will descend to
a map from a subset of Gk(RN) to a subset of Gk(Rn).
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The Problem

Let k < n << N. Suppose that we are given a data set X ⊂ Vk(RN).

We seek:

An embedding α : Vk(Rn) → Vk(RN) that is optimal with respect to
X .

The set of possible embeddings α is parametrized by the Stiefel
manifold Vn(RN).
An embedding α is optimal with respect to X if it minimizes the sum
of the squared distances between each data point xi ∈ X and its image
πα(xi ).

An equivariant projection map πα : X → α(Vk(Rn)).

The image X̃ := πα(X ) is a lower-dimensional representation of X .
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An Equivariant Dimension Reduction Map

Suppose we have chosen an embedding α. We now define πα.

Polar decomposition: Let A ∈ Rn×k with n ≥ k . There exists a
matrix U ∈ Rn×k with orthonormal columns and a unique self-adjoint
positive semidefinite matrix H ∈ Rk×k such that A = UH. If
rank(A) = k , then H is positive definite, hence invertible, and U is
uniquely determined by U = AH−1.

Fix α ∈ Vn(RN). Let L = {y ∈ Vk(RN)| rank(αT y) < k}. Define
πα : Vk(RN) \ L → α(Vk(Rn)) as follows. Let αT y = UH be the
unique polar decomposition of αT y . Define πα by πα(y) := αU.

Proposition: For fixed α, πα minimizes the sum of squared distances
from xi ∈ X to their images in α(Vk(Rn)).

Proposition: πα is O(k)-equivariant.
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Finding an Optimal Embedding

The set of possible embeddings α is parametrized by the Stiefel
manifold Vn(RN).

Under strict assumptions on the data set X , PCA supplies a critical
embedding α.

Under looser assumptions on the data set X , we use gradient descent
with the α supplied by PCA as an initial point.

The software package manopt implements gradient descent on Stiefel
manifolds.
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Thank you!
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