Equivariant Dimensionality Reduction on Stiefel Manifolds

Maddie Weinstein

Stanford University

mweinste@stanford.edu

with Andrew Lee, Harlin Lee, and Nikolas Schonsheck project advised by Jose Perea

- general problem: dimensionality reduction
- our setting: Stiefel manifolds
- our problem
- our solution

- General Idea: Let n < N. Suppose we have a data set X ⊂ ℝ^N of intrinsic dimension n. We wish to find an n-dimensional subspace S ⊂ ℝ^N and a subset X̃ ⊂ S that best represents X.
- **Our Setting:** We will present an algorithm for dimensionality reduction on **Stiefel manifolds** that respects their topology.

- Let 0 < t < s. The Stiefel manifold V_t(ℝ^s) ⊂ ℝ^{s×t} is the set of orthonormal t-frames in ℝ^s.
- The orthogonal group O(t) acts on $V_t(\mathbb{R}^s)$ from the right via matrix multiplication. The quotient is the real **Grassmannian** $G_t(\mathbb{R}^s)$.

- Let X, Y be spaces with an action of a group G, and π : X → Y be a map. We say that π is G-equivariant if for all x ∈ X, we have π(g · x) = g · π(x).
- If a map π is equivariant, then it respects equivalence classes. That is, if x₁ ~ x₂, then π(x₁) ~ π(x₂).
- In particular, if our dimension reduction map π from a subset of V_k(ℝ^N) to a subset of V_k(ℝⁿ) is O(k)-equivariant, then frames that span the same k-dimensional subspace of ℝ^N will map to frames that span the same k-dimensional subspace of ℝⁿ. Thus π will descend to a map from a subset of G_k(ℝ^N) to a subset of G_k(ℝⁿ).

Let $k < n \ll N$. Suppose that we are given a data set $X \subset V_k(\mathbb{R}^N)$. We seek:

- An embedding $\alpha: V_k(\mathbb{R}^n) \to V_k(\mathbb{R}^N)$ that is optimal with respect to X.
 - The set of possible embeddings α is parametrized by the Stiefel manifold V_n(ℝ^N).
 - An embedding α is optimal with respect to X if it minimizes the sum of the squared distances between each data point x_i ∈ X and its image π_α(x_i).
- An equivariant projection map $\pi_{\alpha}: X \to \alpha(V_k(\mathbb{R}^n)).$

The image $\tilde{X} := \pi_{\alpha}(X)$ is a lower-dimensional representation of X.

Suppose we have chosen an embedding α . We now define π_{α} .

- Polar decomposition: Let A ∈ ℝ^{n×k} with n ≥ k. There exists a matrix U ∈ ℝ^{n×k} with orthonormal columns and a unique self-adjoint positive semidefinite matrix H ∈ ℝ^{k×k} such that A = UH. If rank(A) = k, then H is positive definite, hence invertible, and U is uniquely determined by U = AH⁻¹.
- Fix α ∈ V_n(ℝ^N). Let L = {y ∈ V_k(ℝ^N)|rank(α^Ty) < k}. Define π_α: V_k(ℝ^N) \ L → α(V_k(ℝⁿ)) as follows. Let α^Ty = UH be the unique polar decomposition of α^Ty. Define π_α by π_α(y) := αU.
- Proposition: For fixed α, π_α minimizes the sum of squared distances from x_i ∈ X to their images in α(V_k(ℝⁿ)).
- Proposition: π_{α} is O(k)-equivariant.

- The set of possible embeddings α is parametrized by the Stiefel manifold V_n(ℝ^N).
- Under strict assumptions on the data set X, PCA supplies a critical embedding α.
- Under looser assumptions on the data set X, we use gradient descent with the α supplied by PCA as an initial point.
- The software package manopt implements gradient descent on Stiefel manifolds.

Thank you!