Voronoi Cells in Metric Algebraic Geometry of Plane

Curves

Maddie Weinstein
University of California Berkeley
maddie@math.berkeley.edu
Joint work with Madeline Brandt

Overview

(1) Convergence of Voronoi diagrams of point clouds to Voronoi cells of varieties
(2) Application: medial axis
(3) Application: curvature and the evolute

Voronoi Diagrams of Point Clouds

Figure: A Voronoi diagram of the bookstores in Madison. Created using program by Rodion Chachura.

Voronoi Cells of Varieties

Definition

Let X be a real algebraic variety of codimension c in \mathbb{R}^{n} and y a smooth point on X. Its Voronoi cell consists of all points whose closest point in X is y, i.e.

$$
\operatorname{Vor}_{X}(y):=\left\{u \in \mathbb{R}^{n}: y \in \underset{x \in X}{\arg \min }\|x-u\|^{2}\right\}
$$

The Voronoi cell $\operatorname{Vor}_{x}(y)$ is a convex semialgebraic set of dimension c, living in the normal space $N_{X}(y)$ to X at y. Its boundary consists of the points in \mathbb{R}^{n} that have at least two closest points in X, including y.

Figure: A quartic space curve and a Voronoi cell in a normal plane.

Convergence Theorem: Voronoi Version

Definition

Given a point $x \in \mathbb{R}^{n}$ and a closed set $B \subset \mathbb{R}^{n}$, define

$$
d_{w}(x, B)=\inf _{b \in B} d(x, b) .
$$

A sequence $\left\{B_{\nu}\right\}_{\nu \in \mathbb{N}}$ of compact sets is Wijsman convergent to B if for every $x \in \mathbb{R}^{n}$, we have that

$$
d_{w}\left(x, B_{\nu}\right) \rightarrow d_{w}(x, B) .
$$

Theorem (Brandt-W. '19)

Let X be a compact curve in \mathbb{R}^{2} and $\left\{A_{\epsilon}\right\}_{\epsilon}{ }_{\searrow 0}$ a sequence of finite subsets of X containing all singular points of X such that no point of X is more than distance ϵ from every point in A_{ϵ}. Then every Voronoi cell of X is the Wijsman limit of a sequence of Voronoi cells of $\left\{A_{\epsilon}\right\}_{\epsilon} \searrow_{0}$.

Example of Convergence Theorem

Figure: Voronoi cells of 101,441 , and 1179 points sampled from the quartic butterfly curve: $x^{4}-x^{2} y^{2}+y^{4}-4 x^{2}-2 y^{2}-x-4 y+1=0$.

Definition of Medial Axis

Definition

The medial axis of a variety X is the locus of points in the ambient space which have more than one nearest point on X.

If X is a finite point set, then its medial axis is the Voronoi diagram. For a general variety, the medial axis is composed of the boundaries of Voronoi cells.

Long Edges and Short Edges

Proposition/Definition (Brandt '94)

Let $X \subset \mathbb{R}^{2}$ be a compact smooth plane curve, and let A_{ϵ} be an ϵ-approximation of X. A Voronoi cell $\operatorname{Vor}_{A_{\epsilon}}\left(a_{\epsilon}\right)$ for $a_{\epsilon} \in A_{\epsilon}$ is polyhedral, meaning it is an intersection of half-spaces. For sufficiently small ϵ, exactly two edges of $\operatorname{Vor}_{A_{\epsilon}}\left(a_{\epsilon}\right)$ will intersect X. We call these edges the long edges of the Voronoi cell, and all other edges are called short edges.

Figure: The long edges (blue) and short edges (red) of Voronoi cells of points sampled from the butterfly curve.

Medial Axis from Voronoi Cells

Figure: A medial axis approximation of the butterfly curve obtained from short edges of Voronoi cells, which are shown in red.

Definition 1 of Curvature: Using "Infinitely Close" Points

Definition (Cauchy, 1826)

Let $X \subset \mathbb{R}^{2}$ be a curve and $p \in X$ a smooth point. The center of curvature at p is the intersection of the normal line to X at p and the normal line to X at a point infinitely close to p. The radius of curvature at p is the distance from p to its center of curvature. The (unsigned) curvature is the reciprocal of the radius of curvature.

Definition 2 of Curvature: Using Envelope of Normal Lines

Definition

The envelope of a one-parameter family of plane curves given implicitly by $F(x, y, t)=0$ is a curve that touches every member of the family tangentially. The envelope is the variety defined by the ideal

$$
\left\langle\frac{\partial F}{\partial t}, F(x, y, t)\right\rangle \subset \mathbb{R}[x, y] .
$$

The envelope of the family of normal lines parametrized by the points of the curve is called its evolute. The evolute is the locus of the centers of curvature.

Curvature and the Evolute

Figure: The eleven real points of critical curvature on the butterfly curve (purple) joined by green line segments to their centers of curvature. These give cusps on the evolute (light blue).

Voronoi Methods for Computing Curvature

Theorem (Brandt-W. '19)

Let X be a smooth plane curve of degree at least 3. Fix $p \in X$. Let δ be less than the minimum of the reach and the distance to the nearest critical point of curvature to p, and let $B(p, \delta)$ be a ball of radius δ centered at p. Then
(1) The Voronoi cell $\operatorname{Vor}_{X \cap B(p, \delta)}(p)$ is a ray. The distance from p to the endpoint of this ray is the radius of curvature of X at p.
(2) Consider a sequence of ϵ-approximations A_{ϵ} of $X \cap B_{p, \delta}$. Let a_{ϵ} be the point such that $p \in \operatorname{Vor}_{A_{\epsilon}}\left(a_{\epsilon}\right)$, and let d_{ϵ} be the minimum distance from a_{ϵ} to a vertex of $\operatorname{Vor}_{A_{\epsilon}}\left(a_{\epsilon}\right)$. Then the sequence d_{ϵ} converges to the radius of curvature of p.

Degree of Critical Curvature

Theorem (Brandt-W. '19)

Let $X \subset \mathbb{R}^{2}$ be a smooth, irreducible curve of degree $d \geq 3$. Then the degree of critical curvature of X is $6 d^{2}-10 d$.

Current Work

- Study the degree of critical curvature of varieties of higher dimension.
- Use exact methods to study metric algebraic geometry of varieties.
- reach
- curvature
- bottlenecks
- Voronoi decomposition
- Euclidean Distance Degree and Discriminant

Thank you!

Convergence Theorem: Delaunay Version

Theorem (Brandt-W. '19)

Let X be a compact curve in \mathbb{R}^{2} and $\left\{A_{\epsilon}\right\}_{\epsilon} \searrow_{0}$ a sequence of finite subsets of X containing all singular points of X such that no point of X is more than distance ϵ from every point in A_{ϵ}. If X is not tangent to any circle in four or more points, then every maximal Delaunay cell is the Hausdorff limit of a sequence of Delaunay cells of $\left\{A_{\epsilon}\right\}_{\epsilon} \searrow_{0}$.

Delaunay Cells

Definition

Let $B(p, r)$ denote the open disc with center $p \in \mathbb{R}^{n}$ and radius $r>0$. We say this disc is inscribed with respect to X if $X \cap B(p, r)=\emptyset$ and we say it is maximal if no disc containing $B(p, r)$ shares this property. Given an inscribed disc B of an algebraic variety $X \subset \mathbb{R}^{n}$, the Delaunay cell $\operatorname{Del}_{X}(B)$ is $\operatorname{conv}(\bar{B} \cap X)$.

Figure: The dark blue line segment is a Delaunay cell defined by the light blue maximally inscribed circle with center $(-3 / 8,0)$ and radius $\sqrt{61} / 8$.

Duality of Delaunay and Voronoi Cells

Definition

Let $X \subset \mathbb{R}^{2}$ be a finite point set. A Delaunay triangulation is a triangulation $D T(X)$ of X such that no point of X is inside the circumcircle of any triangle of $D T(X)$.

Remark

The circumcenters of triangles in $D T(X)$ are the vertices in the Voronoi diagram of X.

Hausdorff Convergence

The Hausdorff distance of two compact sets B_{1} and B_{2} in \mathbb{R}^{n} is defined as

$$
d_{h}\left(B_{1}, B_{2}\right):=\sup \left\{\sup _{x \in B_{1}} \inf _{y \in B_{2}} d(x, y), \sup _{y \in B_{2}} \inf _{x \in B_{1}} d(x, y)\right\} .
$$

If an adversary gets to put your ice cream on either set B_{1} or B_{2} with the goal of making you go as far as possible, and you get to pick your starting place in the opposite set, then $d_{h}\left(B_{1}, B_{2}\right)$ is the farthest the adversary could make you walk in order for you to reach your ice cream.

Definition

A sequence $\left\{B_{\nu}\right\}_{\nu \in \mathbb{N}}$ of compact sets is Hausdorff convergent to B if $d_{h}\left(B, B_{\nu}\right) \rightarrow 0$ as $\nu \rightarrow \infty$.

