Voronoi Cells of Varieties

Maddie Weinstein

University of California Berkeley
maddie@math.berkeley.edu
with Diego Cifuentes, Kristian Ranestad, and Bernd Sturmfels

Overview

(1) Voronoi cells
(2) Voronoi ideal
(3) Voronoi degree
(4) Low rank matrices

Voronoi cells

Definition

Let X be a real algebraic variety of codimension c in \mathbb{R}^{n} and y a smooth point on X. Its Voronoi cell consists of all points whose closest point in X is y, i.e.

$$
\operatorname{Vor}_{x}(y):=\left\{u \in \mathbb{R}^{n}: y \in \underset{x \in X}{\arg \min }\|x-u\|^{2}\right\}
$$

The Voronoi cell $\operatorname{Vor}_{x}(y)$ is a convex semialgebraic set of dimension c, living in the normal space $N_{X}(y)$ to X at y. Its boundary consists of the points in \mathbb{R}^{n} that have at least two closest points in X, including y.

Figure: A quartic space curve and the Voronoi cell in one of its normal planes $3_{/ 19}$

Voronoi ideal

Let $I=\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle$ in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and $X=V(I) \subset \mathbb{R}^{n}$. We will now give equations for the ideal of $\operatorname{Vor}_{x}(y)$. Consider the polynomial ring $R=\mathbb{Q}\left[x_{1}, \ldots, x_{n}, u_{1}, \ldots, u_{n}\right]$ where $u=\left(u_{1}, \ldots, u_{n}\right)$ is an additional unknown point.

Definition

The augmented Jacobian of X at x is

$$
J_{l}(x, u):=\left[\begin{array}{c}
u-x \\
\left(\nabla f_{1}\right)(x) \\
\vdots \\
\left(\nabla f_{m}\right)(x)
\end{array}\right]
$$

Voronoi ideal

Let N_{l} denote the ideal in R generated by I and the $(c+1) \times(c+1)$ minors of the augmented Jacobian $J_{l}(x, u)$, where c is the codimension of the given variety $X \subset \mathbb{R}^{n}$. The ideal N_{l} in R defines a subvariety of dimension n in $\mathbb{R}^{2 n}$, namely the Euclidean normal bundle of X. Let $N_{l}(y)$ denote the linear ideal that is obtained from N_{I} by replacing the unknown point x by the given point $y \in \mathbb{R}^{n}$.

Example

Let $n=2$ and $I=\left\langle x_{1}^{3}-x_{2}^{2}\right\rangle$, so $X=V(I) \subset \mathbb{R}^{2}$ is a cubic curve with a cusp at the origin. The ideal of the Euclidean normal bundle of X is

$$
N_{I}=\left\langle x_{1}^{3}-x_{2}^{2}, \operatorname{det}\left(\begin{array}{cc}
u_{1}-x_{1} & u_{2}-x_{2} \\
3 x_{1}^{2} & -2 x_{2}
\end{array}\right)\right\rangle .
$$

For the point $y=(4,8)$, we have $N_{l}(y)=\left\langle u_{1}+3 u_{2}-28\right\rangle$.

Voronoi ideal

Let $I=\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle$ in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and $X=V(I) \subset \mathbb{R}^{n}$.

Definition

The critical ideal of the variety X at the point y is

$$
C_{l}(y)=I+N_{l}+N_{l}(y)+\left\langle\|x-u\|^{2}-\|y-u\|^{2}\right\rangle .
$$

Definition

The Voronoi ideal is the following ideal in $\mathbb{Q}\left[u_{1}, \ldots, u_{n}\right]$. It is obtained from the critical ideal by saturation and elimination:

$$
\operatorname{Vor}_{l}(y)=\left(C_{l}(y):\langle x-y\rangle^{\infty}\right) \cap \mathbb{Q}\left[u_{1}, \ldots, u_{n}\right] .
$$

Voronoi ideal

Example

Let $n=2$ and $I=\left\langle x_{1}^{3}-x_{2}^{2}\right\rangle$, so $X=V(I) \subset \mathbb{R}^{2}$ is a cubic curve with a cusp at the origin. Let $y=(4,8)$.
The Voronoi ideal is

$$
\begin{gathered}
\operatorname{Vor}_{l}(y)= \\
\left\langle u_{1}-28, u_{2}\right\rangle \cap\left\langle u_{1}+26, u_{2}-18\right\rangle \cap\left\langle u_{1}+3 u_{2}-28,27 u_{2}^{2}-486 u_{2}+2197\right\rangle .
\end{gathered}
$$

Figure: The cuspidal cubic is shown in red. The Voronoi cell of a smooth point is a green line segment. The Voronoi cell of the cusp is the convex region bounded by the blue curve.

Voronoi degree

Remark

When discussing degree, we identify the variety X and $\delta_{\text {alg }} \operatorname{Vor} \operatorname{Va}_{X}(y)$ with their Zariski closures in $\mathbb{P}_{\mathbb{C}}^{n}$.

Definition

The algebraic boundary of the Voronoi cell $\operatorname{Vor}_{x}(y)$ is a hypersurface in the normal space to X at y. Its degree $\delta_{X}(y)$ is called the Voronoi degree of X at y.

Voronoi degree of curve

Theorem

Let $X \subset \mathbb{P}^{n}$ be a curve of degree d and geometric genus g with at most ordinary multiple points as singularities. The Voronoi degree at a general point $y \in X$ equals

$$
\delta_{X}(y)=4 d+2 g-6
$$

provided X is in general position in \mathbb{P}^{n}.

Voronoi degree of curve

Theorem

Let $X \subset \mathbb{P}^{n}$ be a curve of degree d and geometric genus g with at most ordinary multiple points as singularities. The Voronoi degree at a general point $y \in X$ equals

$$
\delta_{X}(y)=4 d+2 g-6
$$

provided X is in general position in \mathbb{P}^{n}.

Example

If X is a rational curve of degree d, then $g=0$ and hence $\delta_{X}(y)=4 d-6$. If X is an elliptic curve, so the genus is $g=1$, then we have $\delta_{X}(y)=4 d-4$.

Voronoi degree of curve: Example

Figure: A space curve with $d=4$ and $g=1$ has Voronoi degree $\delta_{X}(y)=12$.

Voronoi degree of surface

Theorem

Let $X \subset \mathbb{P}^{n}$ be a smooth surface of degree d. Then its Voronoi degree equals

$$
\delta_{X}(y)=3 d+\chi(X)+4 g(X)-11
$$

provided the surface X is in general position in \mathbb{P}^{n} and y is a general point on X.

- $\chi(X):=c_{2}(X)$ is the topological Euler characteristic, which equals the degree of the second Chern class of the tangent bundle
- $g(X)$ is the genus of the curve obtained by intersecting X with a general smooth quadratic hypersurface in \mathbb{P}^{n}

Norms on Space of Matrices

Fix the space $\mathbb{R}^{m \times n}$ of real $m \times n$ matrices.

Frobenius Norm

$$
\|U\|_{F}:=\sqrt{\sum_{i j} U_{i j}^{2}}
$$

Spectral Norm

$\|U\|_{2}:=\max _{i} \sigma_{i}(U)$ which extracts the largest singular value.

Low Rank Matrix Approximation

Remark

Let X denote the variety in $\mathbb{R}^{m \times n}$ of real $m \times n$ matrices of rank $\leq r$. Fix a rank r matrix V in X. Let $U \in \operatorname{Vor}_{X}(V)$ and let $U=\Sigma_{1} D \Sigma_{2}$ be its singular value decomposition. Let $D^{[r]}$ be the matrix that is obtained from D by replacing all singular values except for the r largest ones by zero. By the Eckart-Young Theorem, we have $V=\Sigma_{1} \cdot D^{[r]} \cdot \Sigma_{2}$.

Remark

The Eckart-Young Theorem works for both norms, so both give the same Voronoi cell Vor ${ }_{X}(V)$.

Voronoi cell of low rank matrix

Theorem

Let V be an $m \times n$-matrix of rank r. The Voronoi cell $\operatorname{Vor}_{x}(V)$ is congruent up to scaling to the unit ball in the spectral norm on the space of $(m-r) \times(n-r)$-matrices.

Norms on Space of Symmetric Matrices

Consider the space $\mathbb{R}\binom{n+1}{2}$ whose coordinates are the upper triangular entries of a symmetric $n \times n$ matrix. Let X be the variety of symmetric matrices of rank $\leq r$.

Remark

The Frobenius norm and Euclidean norm differ on this space.
The Frobenius norm on $\mathbb{R}\binom{n+1}{2}$ is the restriction of the Frobenius norm on $\mathbb{R}^{n \times n}$ to the subspace of symmetric matrices.

Example

Let $n=2$. We identify the vector (a, b, c) with the symmetric matrix $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$. The Frobenius norm is $\sqrt{a^{2}+2 b^{2}+c^{2}}$, whereas the Euclidean norm is $\sqrt{a^{2}+b^{2}+c^{2}}$.

Low Rank Approximation on the Space of Symmetric Matrices

Remark

The Frobenius and Euclidean norms have dramatically different properties with respect to low rank approximation. The Eckart-Young Theorem remains valid for the Frobenius norm on $\mathbb{R}\binom{n+1}{2}$, but not for the Euclidean norm.

Figure: The Voronoi cell of a symmetric 3×3 matrix of rank 1 is a convex body of dimension 3. It is shown for the Frobenius norm (left) and for the Euclidean norm (right).

New Work: Voronoi Cells in Metric Algebraic Geometry of Plane Curves

Joint with Madeline Brandt, Arxiv 1906.11337

- Study limits of Voronoi decompositions.
- Detect features of variety (reach, medial axis, bottlenecks, maximal radius of curvature) from Voronoi decomposition.

Thank you!

