Algebraicity of Persistent Homology

Emil Horobeţ¹ and **Maddie Weinstein**²
¹Sapientia University, ² University of California Berkeley

Let $f_1, \ldots, f_s \in \mathbb{Q}[x_1, \ldots, x_n]$ and let $X = V(f_1, \ldots, f_s)$ be the real points in the variety V.

Definition. The *true persistent homology of a variety* X *at parameter* ϵ is the homology of its ϵ -neighborhood. **Theorem(H.-W.'18).** The values of the persistence parameter ϵ at which a bar in the true barcode appears or disappears are real numbers algebraic over \mathbb{Q} .

Proof idea. Use Hardt's theorem from real algebraic geometry to obtain a semi-algebraic trivialization. **Definition.** The ϵ -offset hypersurface $\mathcal{O}_{\epsilon}(X)$ is the envelope of ϵ -balls centered at a point x on the variety. As x varies, we obtain the ϵ -offset correspondence $\mathcal{OC}_{\epsilon}(X)$.

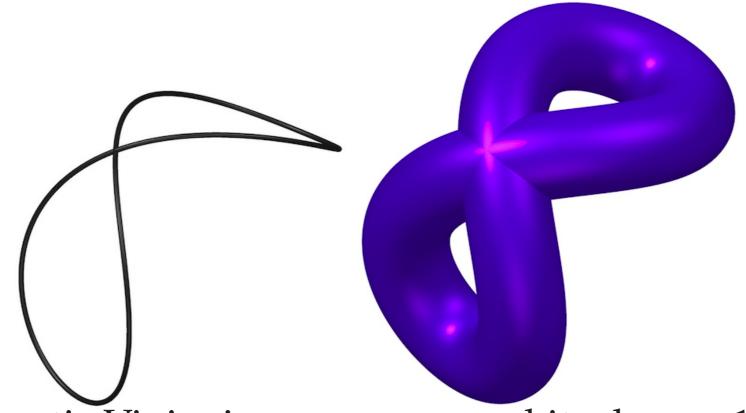


Figure 1: The quartic Viviani space curve and its degree 10 offset surface.

Consider the projection $\mathcal{OC}_{\epsilon}(X) \to \mathcal{O}_{\epsilon}(X)$. The branch locus of this projection consists of points y for which the ϵ -ball centered around y is at least doubly tangent to the variety X. We denote the closure of the union of all branch loci over ϵ in $\mathbb{R}_{\geq 0}$ by B(X,X), called the *bisector hypersurface of the variety* X.

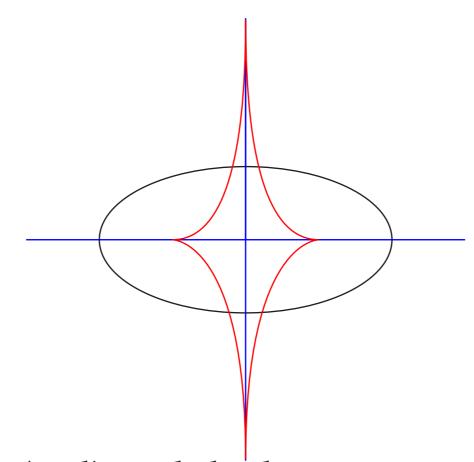


Figure 2: The evolute (red) and the bisector curve (blue) of an ellipse.

Theorem(H.-W.'18). (Geometric interpretation of endpoints in barcode.) Let $X \subset \mathbb{R}^n$ be a hypersurface. Let $J = \{[\delta_l, \epsilon_l] | l \in \{1, \ldots, m\}\}$ be the set of intervals in the barcode for the top dimensional Betti number. Then each interval endpoint ϵ_l corresponds to a point y_l on the bisector hypersurface B(X, X) which is an isolated real point in $\mathcal{O}_{\epsilon_l}(X)$. Furthermore, y_l is the limit of a sequence of centers of hyperballs contained in the complement of $\mathcal{O}_{\epsilon}(X)$ as $\epsilon \to \epsilon_l$.

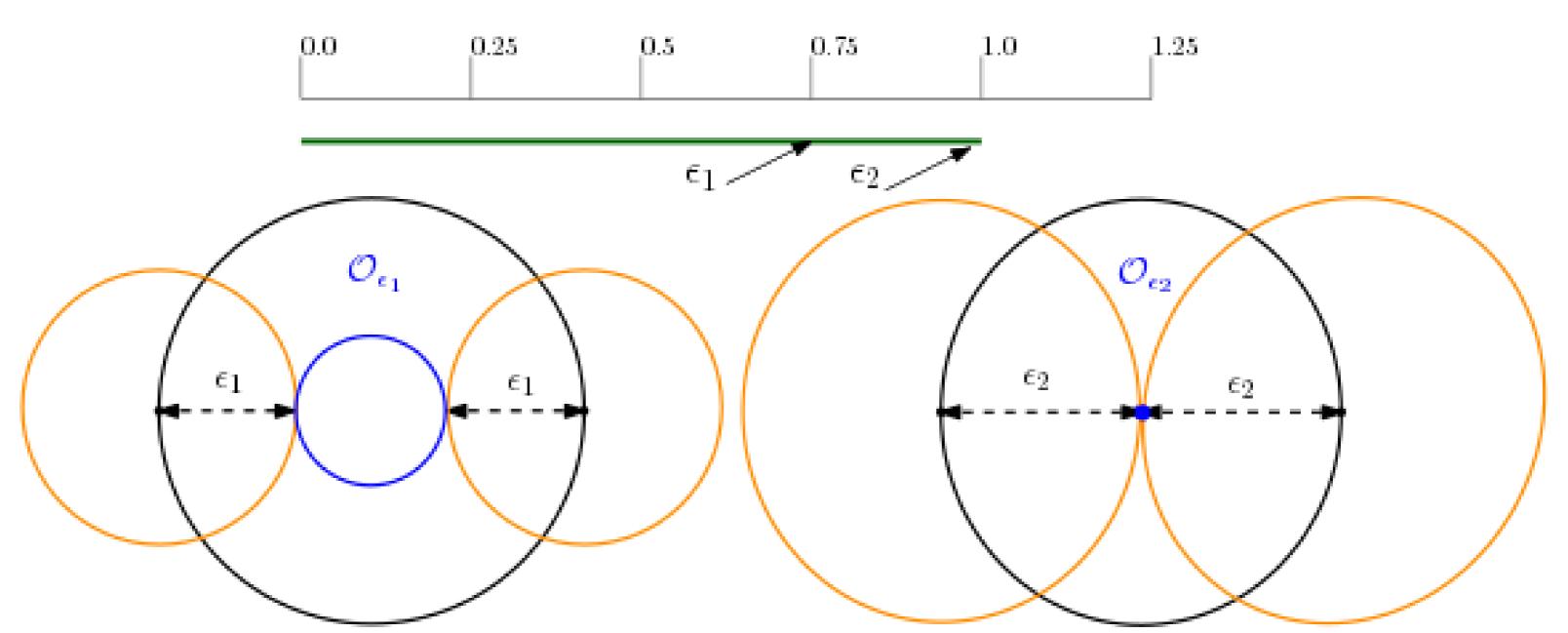


Figure 3: These pictures illustrate how the offset variety provides a geometric interpretation of the endpoints of a bar. The black circle is the variety X and the orange circles are ϵ - balls around X. When ϵ reaches the radius of the black circle, the blue offset hypersurface \mathcal{O}_{ϵ} has an isolated real point.