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The Reach of an Algebraic Variety

Definition

The medial axis of a variety V ⊂ Rn is the set Med(V ) of all points
u ∈ Rn such that the minimum distance from V to u is attained by two
distinct points. The reach τV is the infimum of all distances from points
on the variety V to points in its medial axis Med(V ).

Figure: The medial axis of the quartic butterfly curve can be seen in its Voronoi
approximation. 2 / 25



Algebraicity of Reach

Proposition (Horobet-W. ’18)

Let V be a smooth algebraic variety in Rn. Let f1, . . . , fs ∈ Q[x1, . . . , xn]
with V = VR(f1, . . . , fs). Then the reach of V is an algebraic number over
Q.
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Reach, Bottlenecks, and Curvature

Figure: The reach of a manifold is attained by a bottleneck, two points on a
circular arc, or a point of maximal curvature. Figure and Theorem due to
Aamari-Kim-Chazal-Michel-Rinaldo-Wasserman ’17.
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Bottleneck Degree

Denote by BND(V ) the bottleneck degree of V ⊂ Cn. Under certain
conditions, this coincides with twice the number of bottleneck pairs.

Theorem (Di Rocco-Eklund-W. ’19)

Let V ⊂ C2 be a “general” curve of degree d . Then
BND(V ) = d4 − 5d2 + 4d .

Let V ⊂ C3 be a “general” surface of degree d . Then
BND(V ) = d6 − 2d5 + 3d4 − 15d3 + 26d2 − 13d .

For any smooth variety V ⊂ Pn
C in “general position,” we have an

algorithm to express the bottleneck degree in terms of the polar
classes of V .
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Building Bridges Between Differential Geometry and
Computational Algebraic Geometry

Curvature is central to the study of differential geometry.

Curvature is a property of algebraic varieties.

Properties of algebraic varieties should have defining polynomial
equations and degrees!
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Algebraic Manifold: Algebraic Variety and Differentiable
Manifold

f ∈ R[x1, . . . , xn]

V = {x ∈ Cn|f (x) = 0} smooth algebraic variety

M = V ∩ Rn differentiable submanifold of Rn

M is an algebraic manifold
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Euclidean Connection and Second Fundamental Form

For any manifold M, let T (M) denote the set of smooth vector fields on
M; this is the space of smooth sections of the tangent bundle TM. For
M ⊂ Rn, let N (M) denote the space of smooth sections of the normal
bundle NM. The Euclidean connection ∇ on Rn is a map
∇ : T (Rn)× T (Rn)→ T (Rn), (X ,Y ) 7→ ∇XY defined as follows:

(∇XY )(p) =
n∑

i=1

Xi (p)
∂Y

∂xi
(p).

In other words, ∇XY is the vector field whose components are the
directional derivatives of the components of Y in the direction X .
The second fundamental form of M is the map II from T (M)× T (M)
to N (M) given by

II(X ,Y ) := (∇XY )⊥.
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Principal Curvatures

Let M ⊂ R3 be a surface. Fix a point p ∈ M and vector fields
X ,Y ∈ T (M) such that X (p) and Y (p) form an orthonormal basis of
TpM. Let N(p) be a unit vector in NpM. The principal curvatures of M
at p are the eigenvalues of the symmetric matrix[

II(X ,X )(p) · N(p) II(X ,Y )(p) · N(p)
II(X ,Y )(p) · N(p) II(Y ,Y )(p) · N(p)

]
.

If X and Y are selected so that the matrix is diagonal, then X (p) and
Y (p) are the principal directions, up to a choice of normal vector.
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Critical Curvature Points and Umbilics

Figure: The pictures show the three quadric surfaces X1 = {x21 + 2x22 + 4x23 = 1}
(left picture) and X2 = {−x21 + 2x22 + 4x23 = 1} (picture in the middle) and
X3 = {−2x21 − x22 + 4x23 = 1} (right picture). The critical curvature points are
shown in green and the umbilical points are shown in red.
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Degree of Critical Curvature

Theorem (Brandt-W. ’19)

Let V ⊂ R2 be a smooth, irreducible curve of degree d ≥ 3. Then the
degree of critical curvature of V is 6d2 − 10d .
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Equations for Critical Curvature Locus

The following equations define the locus of pairs (x , u) where x ∈ M and
u is a principal direction at x :

f (x1, . . . , xn) = 0,

∇f · u = 0,

n∑
i=1

u2i − 1 = 0,

λ2(∇f · ∇f )− 1 = 0,

Hf · u + y1u + y2∇f = 0.

The curvature is given by the absolute value of g(x , u, λ) = λut · Hf · u.
Using the principle of Lagrange multipliers, we intersect the above locus
with the locus defined by the vanishing of the minors of a matrix of partial
derivatives of the above equations and partial derivatives of g .
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Upper Bound for Critical Curvature Degree

Theorem (Breiding-Ranestad-W.’21)

Let V ⊂ R3 be a smooth, irreducible surface of degree d ≥ 3. There are
only finitely many complex critical curvature points of V . An upper bound
for their number is given by 1

8(2796d3 − 6444d2 + 3696d).

d 1
8(2796d3 − 6444d2 + 3696d) actual number

2 498 18
3 3573 ≥ 456
4 11328 ≥ 1808
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Umbilics

Theorem (Salmon 1865)

The degree of the variety of umbilics of a general surface of degree d in
R3 is 10d3 − 28d2 + 22d .
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From Umbilics to Matrices with Partitioned Eigenvalues

Umbilics occur when the matrix of the second fundamental form has
repeated eigenvalues. What is known about the algebraic geometry of
matrices with repeated eigenvalues?
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Definition of Variety of Matrices with Partitioned
Eigenvalues

Definition

Let λ = (λ1, . . . , λm) be a partition of n. Let R
n(n+1)

2 be the space of real
symmetric n × n matrices. The variety of λ-partitioned eigenvalues

VR(λ) ⊂ R
n(n+1)

2 is the Zariski closure of the locus of matrices with
eigenvalue multiplicities determined by λ.
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Real Symmetric vs. Real Square, Complex Symmetric,
Complex Square

This table shows the dimension of the locus of matrices with a given
Jordan normal form. (

µ 0
0 µ

) (
µ 1
0 µ

)
Complex Square 1 3

Complex Symmetric 1 2

Real Symmetric 1 Empty

Key Idea

Real symmetric matrices can be studied through their diagonalizations.
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Dimension

Theorem (W. ’20)

The complexification VC(λ) of the real algebraic variety VR(λ) ⊂ R
n(n+1)

2

of n × n real symmetric matrices with eigenvalue multiplicities
corresponding to the partition λ = (λ1, . . . , λm) of n or partitions coarser
than λ is an irreducible variety of dimension m +

(n
2

)
−
∑m

i=1

(
λi
2

)
.
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Parametrization

Proposition (W. ’20)

Let λ = (λ1, . . . , λm) be a partition of n such that λ 6= (1, . . . , 1). Let
Diag(λ) be a diagonal n × n matrix with diagonal entries µ1, . . . , µm
where each entry µi appears with multiplicity λi . Let B be a
skew-symmetric n× n matrix. Let I be the n× n identity matrix. The map

p : Rn×n → Rn×n

B 7→ (I − B)(I + B)−1Diag(λ)(I + B)(I − B)−1

is a parametrization of a Zariski open dense subset of VR(λ) by rational
functions.
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Equations: for small n

We use the parametrization to generate points on the variety and then use
interpolation to find polynomials that vanish on these points.

Example

The ideal I (VR((2, 2))) is of codimension 4 and degree 6. It is generated
by the following 9 quadrics:

x211 + 4x213 − x222 − 4x224 − 2x11x33 + x233 + 2x22x44 − x244
x11x12 + x12x22 + 2x13x23 + 2x14x24 − x12x33 − x12x44
x11x14 − x14x22 + 2x12x24 − x14x33 + 2x13x34 + x14x44
x11x13 − x13x22 + 2x12x23 + x13x33 + 2x14x34 − x13x44

−x211 − 4x214 + x222 + 4x223 − 2x22x33 + x233 + 2x11x44 − x244
2x12x14 − x11x24 + x22x24 − x24x33 + 2x23x34 + x24x44
2x12x13 − x11x23 + x22x23 + x23x33 + 2x24x34 − x23x44

−x211 − 4x212 + 2x11x22 − x222 + x233 + 4x234 − 2x33x44 + x244
−x11x34 + 2x13x14 − x22x34 + 2x23x24 + x33x34 + x34x44
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Equations: for large n

The ideal I (VR(λ)) is stable under the action by conjugation of the real

orthogonal group O(n) on the space R
n(n+1)

2 of real symmetric
n × n-matrices. Thus the degree d homogeneous component I (VR(λ))d is
a representation of O(n).
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Invariants under Action by Orthogonal Group

Denote by I (VR(λ))O(n) the graded vector space of O(n)-invariant
polynomials in I (VR(λ)). Let VR(Dλ) denote the intersection of VR(λ)

with the variety of diagonal matrices in R
n(n+1)

2 . The symmetric group
Sn ⊂ O(n), consisting of the permutation matrices, acts on VR(Dλ) by
permuting the diagonal entries. Let I (VR(Dλ))Sn be the graded vector
space of Sn-invariant polynomials in I (VR(Dλ)).

Theorem (W. ’20)

I (VR(λ))O(n) and I (VR(Dλ))Sn are isomorphic as graded vector spaces.
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Diagonal Variety and Euclidean Distance Degree

Proposition

Let λ = (λ1, . . . , λm) be a partition of n. The degree of the variety
VR(Dλ) of n × n diagonal matrices with eigenvalue multiplicities
partitioned according to λ is

n!

λ1! · · ·λm!

Theorem (Bik and Draisma)

Let λ = (λ1, . . . , λm). The Euclidean distance degree of the variety VR(λ)
of λ-partitioned eigenvalues is n!

λ1!···λm!
.
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Future Work

Obtain an exact formula, or tighter bound, for the critical curvature
degree.

Formulate systems of polynomial equations for other concepts in
differential geometry and distance optimization.
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Thank you!
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Polar Classes

Example

For a smooth surface V ⊂ P3 we have two polar varieties. Let p ∈ P3 be a
general point and l ⊂ P3 a general line. Then P1(V , p) is the set of points
x ∈ V such that the projective tangent plane TxV ⊂ P3 contains p. This
is a curve on V . Similarly, P2(V , l) = {x ∈ V : l ⊆ TxV }, which is finite.

Definition

Let V ⊂ Pn be a smooth variety of dimension m. For j = 0, . . . ,m and a
general linear space L ⊆ Pn of dimension n −m − 2 + j the polar variety
is given by

Pj(V , L) = {x ∈ V : dimTxV ∩ L ≥ j − 1}.

For each polar variety Pj(V , L), there is a corresponding polar class
[Pj(V , L)] = pj which represents Pj(V , L) up to rational equivalence.
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Polar Classes and Chern Classes

Pj(V , L) is either empty or of pure codimension j and

pj =

j∑
i=0

(−1)i
(
m − i + 1

j − i

)
hj−ici (TX ),

where h ∈ An−1(X ) is the hyperplane class.
The polar loci Pj(V , L) are reduced. We have

cj(TX ) =

j∑
i=0

(−1)i
(
m − i + 1

j − i

)
hj−ipi .
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Bottleneck Genericity Assumptions 1/2

Let V ⊂ Pn be a variety. Consider the conormal variety

CV = {(p, q) ∈ Pn × Pn : p ∈ V , q ∈ (TpV )⊥}

and the map
f : CV → Gr(2, n + 1) : (p, q) 7→ 〈p, q〉

from CV to the Grassmannian of lines in Pn that sends a pair (p, q) to the
line spanned by p and q.
The orthogonality relation on Pn is defined via the isotropic quadric
Q ⊂ Pn given in homogeneous coordinates by

∑n
0 x

2
i = 0. Varieties which

are tangent to Q are to be considered degenerate in this context and we
say that a smooth projective variety is in general position if it intersects
Q transversely. Equivalently, a smooth variety V ⊂ Pn is in general
position if CV is disjoint from the diagonal ∆ ⊂ Pn × Pn.
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Bottleneck Genericity Assumptions 2/2

A smooth variety V ⊂ Pn is bottleneck regular if

1 V is in general position,

2 V has only finitely many bottlenecks and

3 the differential dfp : TpCV → Tf (p)G of the map f has full rank for all
p ∈ CV .

If V ⊂ Pn is bottleneck regular, then V is equal to the number of
bottlenecks of V counted with multiplicity.
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