
EXERCISES FOR TAGSS: BOTTLENECKS OF ALGEBRAIC VARIETIES

MADDIE WEINSTEIN

1. Definitions

As in the colloquial sense of the word, a bottleneck refers to a narrowing of a variety, or a place
where it gets closer to self-intersection.

Consider a smooth algebraic variety X ⊂ Rn. We define a ⊥ b by
∑n
i=1 aibi = 0 for a =

(a1, . . . , an), b = (b1, . . . , bn) ∈ Rn. For a point x ∈ X, let (TxX)0 denote the embedded tangent
space of X translated to the origin. Then the Euclidean normal space of X at x is defined as
NxX = {z ∈ Rn : (z− x) ⊥ (TxX)0}.

Definition 1.1. A bottleneck of a smooth algebraic variety X ⊂ Rn is a pair of distinct points
(x, y) ∈ X× X such that xy ⊆ NxX ∩NyX, where xy is the line spanned by x and y.

We note that bottlenecks are given not only by the narrowest parts of the variety, but also by
maximally wide parts of the variety, as our algebraic definition considers all critical points rather
than just the minimums.

Definition 1.2. The narrowest bottleneck distance ρ of a variety X ⊂ Rn is

ρ(X) = min
(x,y) a bottleneck

d(x, y)

where d(x, y) is the Euclidean distance of x and y.

2. Equations

We will now describe the bottleneck locus in R2n which consists of the bottlenecks of X. Let
(f1, . . . , fk) ⊆ R[x1, . . . , xn] be the ideal of X. Consider the ring isomorphism φ : R[x1, . . . , xn] →
R[y1, . . . , yn] defined by xi 7→ yi and let f ′i = φ(fi). Then fi and f ′i have gradients ∇fi and ∇f ′i
with respect to {x1, . . . , xn} and {y1, . . . , yn}, respectively. The augmented Jacobian J is the following
matrix of size (k+ 1)× n with entries in R = R[x1, . . . , xn, y1, . . . , yn]:

J =


y− x

∇f1
...
∇fk

 ,
where y − x is the row vector (x1 − y1, . . . , xn − yn). Let N denote the ideal in R generated by
(f1, . . . , fk) and the (n−dim(X) + 1)× (n−dim(X) + 1) minors of J. Then the points (x, y) of the
variety defined by N are the points (x, y) ∈ X× X ⊂ R2n such that y ∈ NxX. In the same way we
define a matrix J ′ and an ideal N ′ ⊆ R by replacing fi with f ′i and ∇fi with ∇f ′i .

The bottleneck locus B is the variety

B = V((N+N ′) : 〈x− y〉∞) ⊂ X× X ⊂ R2n.

The saturation removes the diagonal, as (x, y) is not a bottleneck if x = y.
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Figure 1. The real bottleneck pairs of the butterfly curve. We thank Madeline
Brandt for the picture.

3. Exercises

3.1. Sets. Please work on these exercises in a set S of people, where S satisfies the following
conditions.

(1) There exists a member of S who is able to run the Jupyter notebook.
(2) There exists a member of S who is familiar with Macaulay2 (or Singular).
(3) There exists a subset {a, b} ∈ S such that a and b did not meet before this summer school.

(Note that this requires the cardinality of S to exceed 1.)

3.2. Exercises.
(1) Explore the Jupyter notebook!
(2) Write Macualay2 (or Singular) code to find the bottleneck locus for plane curves, or for va-

rieties of general dimension. (Note that it is possible to create a Julia file directly in M2 to
find the variety of a 0-dimensional ideal. See https://www.juliahomotopycontinuation.
org/guides/macaulay2/ for code you can copy to M2.)

(3) How many real bottlenecks does a variety have? How many complex bottlenecks does a
variety have? What features of the variety does this property depend on? How can you
modify the equations for a variety to change this number?

(4) Find equations for varieties with bottlenecks with the following features:
• many real bottlenecks.
• narrow bottlenecks.
• your favorite feature.

(5) Make a beautiful graphic of bottlenecks of your favorite variety.
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4. Jupyter Notebook

Sascha Timme created a Jupyter notebook where one can compute and visualize bottlenecks.
To access this notebook, install the Julia programming language and then execute the following
commands. The third command should open a window in your browser where you can use the
notebook.

j u l i a > using Pkg ; pkg " add ht tps :// github . com/saschatimme/TAGSS . g i t "
j u l i a > using TAGSS
j u l i a > notebooks ( )

5. Further Reading

[BT18] discusses the Julia Homotopy Continuation package used in the Jupyter notebook.
[BW19] computes bottlenecks for plane curves, using both symbolic methods and approximate

methods based on a Voronoi decomposition.
[DREW19] gives a formula for the bottleneck degree of an algebraic variety, which under

certain conditions corresponds to twice the number of unique complex bottlenecks.
[Ekl18] discusses the numerical algebraic geometry of bottlenecks.
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